Lecture 6:
Recap
Theorem: (Rank-Nullity Theorem)
Let V and W be vector spaces sit. V is finite-dimensional. Then for any linear transformation $T: V \rightarrow W$, we have:

$$
\text { nullity }(T)+\operatorname{Rank}(T)=\operatorname{dim}(V)
$$

Thm: Let V and W be vector spaces of equal finite-dimensions
Let $T: V \rightarrow W$ be a linear transformation.
Then, the following are equivalent:
(a) T is one-to-one
(b) T is onto
(c) $\operatorname{Rank}(T)=\operatorname{dim}(V)$

Proof: T is one-to-one $\operatorname{dim}(w)$
\Leftrightarrow Nullity $(T)=0$ (by previous proposition)
$\Leftrightarrow \operatorname{Rank}(T)+\operatorname{Nullity}^{\prime}(T)=\operatorname{dim}(V)$
$\Leftrightarrow \quad \operatorname{Rank}(T)=\operatorname{dim}(W) \Leftrightarrow R(T)=W$
$\operatorname{dim}(R(T))$
$\Leftrightarrow T$ is onto

Example: Consider $T=P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by:

$$
T(f(x)): \stackrel{\text { def }}{=} 2 f^{\prime}(x)+\int_{0}^{x} 3 f(t) d t
$$

We have $R(T)=\operatorname{span}\left\{T(1), T(x), T\left(x^{2}\right)\right\}$

$$
\begin{aligned}
& =\operatorname{span}\left\{\begin{aligned}
\operatorname{dim}(R(T))=2+\frac{3}{2} x^{2}, 4 x+x^{3}
\end{aligned}\right\} \\
\operatorname{Rank}(T) & =3 \underbrace{3}_{\text {Linear independent }}(T)+\operatorname{Nullity}(T)=\operatorname{dim}(P / 2(\mathbb{R})) \\
& \Rightarrow \operatorname{Nullity}(T)=0 \Rightarrow N(T)=\{\overrightarrow{0}\}
\end{aligned}
$$

$\Rightarrow T$ is one-to-one.

Example: Show that $\forall q(x) \in P(\mathbb{R}), \exists p(x) \in P(\mathbb{R})$ such that

$$
\left.\left[\left(x^{2}+5 x+7\right) p(x)\right]^{\prime \prime}=\underset{\substack{\text { for all } \\ \text { therese } \\ \text { exist } \\ \hline}}{T} \text { is onto }\right)
$$

Consider $T: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ defined byz

$$
T(p(x))=\left[\left(x^{2}+5 x+7\right) p(x)\right]^{\prime \prime}
$$

(Exercise: T is linear)
(Need to check N(T) $=\left\{\begin{array}{c}- \\ 0\end{array}\right.$ or $\operatorname{Nullitg}(T)=0$) because $\operatorname{dim}(P(\mathbb{R}))=\infty$
Idea: Restrict T to $P_{n}(\mathbb{R})$: Define, $T: P_{n}(\mathbb{R}) \rightarrow P_{n}(\mathbb{R})$ Such that $T(p(x))=\left[\left(x^{2}+5 x+7\right) p(x)\right]^{\prime \prime}$
Remain to show $\operatorname{Nullity}(T)=0$. (Exercise)

The: Let V and W be vector spaces. Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be a basis of V. Then, given any $\vec{\omega}_{1}, \vec{\omega}_{2}, \ldots, \vec{\omega}_{n} \in W$. \exists a unique linear transformation $T: V \rightarrow W$ such that $T\left(\vec{v}_{i}\right)=\vec{w}_{i}$ for $i=1,2, \ldots, n$

Proof: For $\vec{x} \in V, \exists!a_{1}, a_{2}, \ldots, a_{n} \in F$ s.1. $\vec{x}=\sum_{i=1}^{n} a_{i} \vec{v}_{i}$.
We define $T: V \rightarrow W$ by : $T(\vec{x})=\sum_{i=1}^{n} a_{i} \vec{\omega}_{i} \in W$

- T is linear: For $\vec{x}=\sum_{i=1}^{n} a_{i} \vec{v}_{i} \in V, \frac{i=1}{y}=\sum_{i=1}^{n} b_{i} \vec{v}_{i} \in V$ and $c \in F$,
We have: $T(c \vec{x}+\vec{y})=T\left(\sum_{i=1}^{n}\left(c a_{i}+b_{i}\right) \vec{v}_{i}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(c a_{i}+b_{i}\right) \vec{w}_{i} \\
& =c\left(\sum_{i=1}^{n} a_{i} \vec{w}_{i}\right)+\left(\sum_{i=1}^{n} b_{i} \vec{\omega}_{i}\right) \\
& T(\vec{x})
\end{aligned}
$$

- By definition, $T\left(\vec{v}_{i}\right)=\vec{\omega}_{i}$ for $i=1,2, \ldots, n$
- T is unique : Suppose $U: V \rightarrow W$ is linear sit.

$$
u\left(\vec{v}_{i}\right)=\vec{w}_{i} \text { for } \forall i
$$

For any $\vec{x}=\sum_{i=1}^{n} a_{i} \vec{v}_{i} \in V$, we have:

$$
\begin{gathered}
u(\vec{x})=\sum_{i=1}^{n} a_{i} u\left(\frac{\bar{v}_{i}}{\vec{v}_{i}}\right)=\sum_{i=1}^{n} a_{i} \vec{\omega}_{i}=T(\vec{x}) \\
\therefore u=T
\end{gathered}
$$

Corollary: Let V be a vector space with a finite basis

$$
\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}
$$

Then any linear transformation from V to another vector space W is completely determined by its values on β.
(That is, if U and T are linear transformations from V to w sit. $u\left(\vec{v}_{i}\right)=T\left(\vec{v}_{i}\right)$, then $\left.u=T\right)$

Matrix representation
Notation: An ordered basis for a finite-dimensional vector space V is a basis for V endowed with a specific order.

$$
\left.\begin{array}{ccc}
\text { is a basis for } V \text { endowed with a specitic order } \\
\left(\text { e.g. } \mathbb{R}^{2}\left\{\binom{1}{0},\binom{0}{1}\right\} \neq\left\{\binom{0}{1}_{11},\binom{1}{0}\right\} \begin{array}{l}
\text { as } \\
\text { ordered }
\end{array}\right. \\
\beta_{2} & \text { basis }
\end{array}\right)
$$

Definition Let V be a finite-dimensional vector space and $\beta=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}$ be an ordered basis for V.
Then, $\forall \vec{x} \in V, \exists!a_{1}, a_{2}, \ldots, a_{n} \in F$ sit. $\vec{x}=\sum_{i=1}^{n} a_{i} \vec{u}_{i}$ The coordinate vector of \vec{x} relative to β, denoted as $[\vec{x}]_{\beta}$, is the column vector $\left[F^{n}\right) \quad[\vec{x}]_{\beta}=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right) \in F^{n}$

Remark: Define a map $V \rightarrow F^{n}$. This map is linear $\vec{x} \mapsto\left[\vec{x}_{\beta}\right.$
(Ho. $\begin{aligned} & {[a \vec{x}+\vec{y}]_{\beta} } \mapsto[\vec{x}]_{\beta} \\ & \hat{v}\end{aligned}$
Now, suppose V and W are finite-dimensional vector spaces with ordered bases $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ and $\gamma=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$ respectively (for v) (for ω)

Let $T: V \rightarrow W$ be a linear transformation.
Then for each $1 \leq j \leq n, \quad \exists a_{i j} \in F \quad(\leq i \leq m$ such that

$$
T \underset{\hat{W}}{\left(\vec{v}_{j}\right)}=\sum_{i=1}^{m} a_{i j} \vec{w}_{i} \quad \text { for } \quad 1 \leq j \leq n
$$

Definition: With this notation as above, we call the matrix $A:$ def $\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\ 1 \leqslant j \leqslant n}}$ the matrix representation of T in the ordered bases β and γ, and denoted it as $A=[T]_{\beta}^{\gamma}$.

$$
\begin{aligned}
& T\left(\vec{v}_{j}\right)=\sum_{i=1}^{m} a_{i j} \vec{w}_{i} \quad \text { for } \quad 1 \leq j \leq n \text {, }
\end{aligned}
$$

$$
\begin{array}{ll}
\beta=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\} & \text { for } V \\
\gamma=\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}\right\} & \text { for } W
\end{array}
$$

